
DIFFERENTIAL MANIFOLDS HW 6

KELLER VANDEBOGERT

1. Exercise 3.9

Suppose f : M → N is a proper injective immersion, where M , N

are Hausdorff second countable. Then, given p ∈ M , there is a chart

on N reducing to the canonical injection in some open neighborhood

on p. In order to prove that this is a homeomorphism onto f(M), it

suffices to prove that every basic neighborhood contains a subset such

that f is a homeomorphism when restricted to this subset.

Since M , N are locally homeomorphic to Euclidean n-space, they

are locally compact, and hence paracompact. Then, atlases are locally

finite so we can shrink our neighborhood such that it is contained within

a single chart domain for both M , N , we see that the image of an open

set f(U) is identically a−1(U, 0), which is open in the induced topology

f(M). Hence, restricting to a sufficiently small neighborhood, f is an

embedding.

By local compactness, we can find a compact K ⊂ N such that

f(p) ∈ Ko. Then, f−1(K)\U is the intersection of a compact set and

a closed set, hence compact. Extract a finite subcover {U1, . . . , Un}

of some open cover of f−1(K)\U . Then, the images f(Ui) ⊂ N do

not intersect f(p) by injectivity, and hence we can find an open set

V 3 f(p) disjoint from each f(Ui) such that V ⊂ Ko.
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If we can prove that f |f−1(V ) is a homeomorphism, then we are done.

To do this, it suffices to prove that f−1(V ) ⊂ U . But, V was chosen

disjoint from each f(Ui), which in turn were chosen disjoint from U ,

so in particular f−1(V ) ⊂ U\(f−1(K)\U) = U . Hence, f−1(V ) ⊂ U

so that f |f−1(V ) is a homeomorphism. Extending this argument to

every point, f is a topological embedding at every point and hence an

embedding.

2. Problem 2

Define L : G × X → X by sending (g, x) 7→ g · x, Lg : X → X,

Lg(x) = g · x, and Lx : G → X, Lx(g) = g · x (where · denotes our

action).

Using this, first note that ZG(g) ∈ TgG, as we can write ZG(g) =

T0e
tZg
(
∂
∂u
|t
)

. Then, for δx ∈ TxX:

T(g,x)L(ZG(g), δx) = TgL
x(ZG(g)) + TxLg(δx)

Then, noting that etZg|t=0 = g, we see:

TgL
x(ZG(g)) = TgL

xT0e
tZ
( ∂
∂u

∣∣∣
t

)
= T0(L

x ◦ (etZg)
( ∂
∂u

∣∣∣
t

)
=

d

dt

∣∣∣
t=0
etZg · x = ZX(g · x)

(2.1)

Then, putting this together:

T(g,x)L(ZG(g), δx) = ZX(g · x) + TxLg(δx)

As asserted.



DIFFERENTIAL MANIFOLDS HW 6 3

3. Problem 3 (Remark after Proposition 5.111)

We first recall the trivial fact that on a set with the discrete topology,

a subset is compact if and only if it is finite. Hence we want to prove

the equivalence of the definition given in 1.106 with Proposition 5.111.

We want to show 1.106 =⇒ 5.111. Assuming 1.106 holds, sup-

pose K is compact. Then, for every x ∈ K, there exists an open

neighborhood Ux 3 x. Then, taking the union over all x ∈ K, this

constitutes and open and by compactness we can find a finite subcover

{Ux1 , . . . , Uxn}.

Denote by Gxixj := {g ∈ G : gUxi ∩ Uxj 6= ∅}. By assumption, this

set is always finite. It is also clear that GK is contained in
⋃
i,j Gxixj

and is hence also always finite =⇒ GK is compact. Since K was

arbitrary, the result follows.

Conversely, argue by contraposition. Suppose we can find x, y ∈M

such that {g ∈ G : gUx∩Uy 6= ∅} is infinite for all open neighborhoods

Ux, Uy. By local compactness, we can find a compact K containing

Ux ∪ Uy. Then, it is clear that GK ⊃ {g ∈ G : gUx ∩ Uy 6= ∅} and is

hence also not finite.

4. Problem 4

We wish to solve the system of ODE’s given by the flow of the vector

fieldX := −p2q ∂
∂p

+p(1+q2) ∂
∂q

. Consider the closed 2-form σ := dp∧dq.

Then, we see:



4 KELLER VANDEBOGERT

dixσ = d(dp(X) ∧ dq − dq(X) ∧ dp)

= d(−p2qdq − p(1 + q2)dp)

= −2pqdp ∧ dq − 2pqdq ∧ dp = 0

(4.1)

Hence, σ preserves our vector field and it is a simple computation to

see that X is the symplectic gradient of H(p, q) = 1
2
(p2(1 + q2) + c, c is

any constant. Thus LXH = 0. But LXH = dH(X). Hence, given an

integral γ(t) = (p(t), q(t)) of X:

dHγ(t)(X(γ(t))) = dHγ(t)(γ
′(t)) = 0

Hence, we want to calculate dHγ(t)(γ
′(t)):

dHγ(t)(γ
′(t)) = −p2qq′ − p(1 + q2)p′

Setting this equal to 0, we find that qq′

(1+q2)
= p′

p
, and integrating:

p = A(1 + q2)−1/2

Where A = p0(1 + q20)1/2. Using this, we can solve first for q by

integrating the relation q′(t) = p(1 + q2) = A(1 + q2)1/2. We see:

q(t) = sinh(At+B)

Where B is some constant. Then, using the fact that p = A(1 +

q2)−1/2:

p(t) =
A

(1 + sinh2(At+B))1/2
= A sech(At+B)

So our solution is the curve
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γ(t) =
(

sinh(At+B), A sech(At+B)
)

5. Problem 5

Let X := {x ∈ Cn×n : x2 = x = x; Tr(x) = k}.

(a). Let

x0 =

[
Ik 0
0 0

]
Where IK is the k × k identity. Then, we wish to show that for

G = U(n) acting by conjugation, G · x0 = X. To do this, let x ∈ X

arbitrary and choose an orthonormal basis {u1, . . . , uk} for the range

of x in Cn and complete this to a basis for the whole space.

Then, x = u1u1 + · · · + ukuk. Set g = (u1 u2 . . . un). Then, g is

unitary as our ui are orthonormal and if ei denotes the standard basis

vectors (for Cn), the gei = ui. However, x0 = e1e1 + · · · + ekek, and

hence:

gx0g = ge1e1g + · · ·+ gekekg

= ge1ge1 + · · ·+ gekgek

= u1u1 + · · ·+ ukuk = x

(5.1)

Since x ∈ X was arbitrary, we conclude that G · x0 = X.

(b). We first compute the Lie Algebras of our respective Lie Groups G

and Gx0 . In the first case, we have that xx = I, and hence deriving

and setting δx = In gives x + x = 0, so that x = −x. Then the Lie

Algebra of G := U(n) is the subset of skew-adjoint matrices.

Similarly, we can derive the relation gx0g = x0 for each g ∈ Gx0 .

Doing this yields
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δgx0g + gx0δg = 0

Setting δg = In, we compute the Lie Algebra as the set of g with

gx0g = −x0.

Since X is an orbit, it is isomorphic to G/Gx0 , and hence we can

compute the dimension as dimX = dimG−dimGx0 . The dimension of

G is simply n2, and the dimension of Gx0 can be found by characterizing

the stabilizer of x0 under the conjugate action. We find that any g ∈

Gx0 is of the form

[
A 0
0 B

]
Where A and B are k × k and (n − k) × (n − k) unitary matrices,

respectively. Then the dimension is easy to calculate as just k2 + (n−

k)2. Subtracting this from dimG, we have:

dimX = n2 − (n− k)2 − k2 = 2k(n− k)

Hence dimX = 2k(n − k). Now we finally wish to compute the

infinitesimal action on X. This fairly simple though by using matrix

exponentiation. γ(t) = etZ is an arbitrary curve through the identity

such that γ′(0) = Z. Then the infinitesimal action is merely:

d

dt

∣∣
0
(etZ · x)(0) =

d

dt

∣∣
0
(etZxe−tZ)(0) = Zx− xZ

So the infinitesimal action is just taking the commutator.

(c). Note first that δx = xδx+ δxx. Then we have that xδxx = 2xδxx

so that xδxx = 0. Remembering this:
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−J2δx = [x, [x, δx]]

= x[x, δx]− [x, δx]x

= xδx− xδxx− xδxx+ δxx

= xδx+ δxx = δx

(5.2)

Hence, J2δx = −δx so that J2 = −id. Now we can define σ(δx, δ′x) :=

Tr(δ′xJδx). To show this gives a symplectic structure, we need to prove

σ is closed and nondegenerate.

On U(n), we have that 〈x, Z〉 = 1
i
Tr(xZ) is the coadjoint action on

its Lie Algebra. Suppose that x ∈ X is such that x = gxog for some

g ∈ G. Then choose Z := δxx − xδx. Then this is skew-adjoint by

construction and we see:

Z(x) = Zx− xZ = δxx2 − xδxx− xδx+ x2δx = δxx+ xδx = δx

Z ′ is defined similarly (just put a ′ after the δ). A straightforward

(but tedious) computation yields that

〈x, [Z ′, Z]〉 =
1

i
Tr(x[Z ′, Z]) =

1

i
Tr(δ′xJδx)

So that the above is the KKS 2-form. This immediately tells us that

our form is closed and nondegenerate by the KKS classification.


